سری فوریه (Fourier Series)
- سری فوریه (Fourier series)
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {\frac{{ax}}{d} \quad\quad\quad - b \le x \le b}\\ {a \quad\quad\quad b \le x \le \pi - b}\\ {\frac{{a(\pi - x)}}{d} \quad\quad\quad \pi - b < x \le \pi + b}\\ { - a \quad\quad\quad \pi + b < x \le 2\pi - b} \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {\frac{{ax}}{\pi } \quad\quad\quad 0 \le x \le \pi }\\ {0 \quad\quad\quad \pi < x \le 2\pi } \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {a\sin x \quad\quad\quad 0 \le x \le \pi }\\ {0 \quad\quad\quad \pi < x \le 2\pi } \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = a\left| {\sin x} \right| \quad\quad\quad - \pi < x < \pi $
- سری فوریه (Fourier Series) تابع $ f(x) = {x^2} \quad\quad\quad - \pi \le x \le \pi $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {a\cos x \quad\quad\quad 0 < x < \pi }\\ { - a\cos x \quad\quad\quad - \pi < x < 0} \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \frac{{ax}}{{2\pi }} \quad\quad\quad 0 < x < 2\pi $
- سری فوریه (Fourier Series) تابع $ f(x) = \frac{{ax}}{\pi } \quad\quad\quad - \pi < x < \pi $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {\frac{{ax}}{\pi } \quad\quad\quad 0 \le x \le \pi }\\ {\frac{{a(2\pi - x)}}{\pi } \quad\quad\quad \pi \le x \le 2\pi } \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {\frac{{2ax}}{\pi } \quad\quad\quad - \frac{\pi }{2} \le x \le \frac{\pi }{2}}\\ {\frac{{2a(\pi - x)}}{\pi } \quad\quad\quad \frac{\pi }{2} \le x \le \frac{{3\pi }}{2}} \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {a \quad\quad\quad 0 < x < \pi }\\ { - a \quad\quad\quad - \pi < x < 0} \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {a \quad\quad\quad d < x < \pi - d}\\ { - a \quad\quad\quad \pi + d < x < 2\pi - d} \end{array}} \right. $
- سری فوریه (Fourier Series) تابع $ f(x) = \left\{ {\begin{array}{*{20}{c}} {a \quad\quad\quad\quad\quad\quad\quad\quad\quad d < x < 2\pi - d}\\ {0 \quad\quad 0 < x < d \quad and \quad 2\pi - d < x < 2\pi } \end{array}} \right. $