فرمول های انتگرال (Integral) شامل توابع معکوس مثلثاتی (Inverse Trigonometric Function)، در ریاضیات (Mathematics)
\[ \int {{{\sin }^{ - 1}}} axdx = x{\sin ^{ - 1}}ax + {1 \over a}\sqrt {1 - {a^2}{x^2}} + C
\]
\[ \int {{{\cos }^{ - 1}}} axdx = x{\cos ^{ - 1}}ax - {1 \over a}\sqrt {1 - {a^2}{x^2}} + C
\]
\[ \int {{{\tan }^{ - 1}}} axdx = x{\tan ^{ - 1}}ax - {1 \over {2a}}\ln (1 + {a^2}{x^2}) + C
\]
\[ \int {{x^n}} {\sin ^{ - 1}}axdx = {{{x^{n + 1}}} \over {n + 1}}{\sin ^{ - 1}}ax - {a \over {n + 1}}\int {{{{x^{n + 1}}dx} \over {\sqrt {1 - {a^2}{x^2}} }}} \ \ \ \ ,n \ne - 1
\]
\[ \int {{x^n}} {\cos ^{ - 1}}axdx = {{{x^{n + 1}}} \over {n + 1}}{\cos ^{ - 1}}ax + {a \over {n + 1}}\int {{{{x^{n + 1}}dx} \over {\sqrt {1 - {a^2}{x^2}} }}} \ \ \ \ ,n \ne - 1
\]
\[ \int {{x^n}} {\tan ^{ - 1}}axdx = {{{x^{n + 1}}} \over {n + 1}}{\tan ^{ - 1}}ax - {a \over {n + 1}}\int {{{{x^{n + 1}}dx} \over {1 + {a^2}{x^2}}}} \ \ \ \ ,n \ne - 1
\]
1
Thomas' Calculus Early Transcendentals - George B. Thomas Jr., Maurice D. Weir, Joel R. Hass - 13th Edition
نظرات 0 0 0