قواعد رایج مربوط به log (لگاریتم - Logarithm)، در ریاضیات (Mathematics)
\[ {\log _b}\left( x \right) = y \ \ \ \ \Leftrightarrow \ \ \ \ {b^y} = x \] \[ {\log _b}\left( {x \cdot y} \right) = {\log _b}\left( x \right) + {\log _b}\left( y \right) \] \[ {\log _b}\left( {x/y} \right) = {\log _b}\left( x \right) - {\log _b}\left( y \right) \] \[ {\log _b}\left( {{x^y}} \right) = y \cdot {\log _b}\left( x \right) \] \[ {\log _b}\left( c \right) = {1 \over {{{\log }_c}\left( b \right)}} \] \[ {\log _b}\left( x \right) = {{{{\log }_c}\left( x \right)} \over {{{\log }_c}\left( b \right)}} \] \[ {\log _b}\left( 1 \right) = 0 \] \[ {\log _b}\left( b \right) = 1 \] \[ {\log _b}\left( c \right) = {{\ln \left( c \right)} \over {\ln \left( b \right)}} \]
نظرات 0 0 0