آموزش ریاضیات (Mathematics)
۲۱۹ آموزش
نمایش دسته بندی ها (۲۱۹ آموزش)

فرمول های انتگرال (Integral) شامل توابع گویا (Rational Function)، در ریاضیات (Mathematics)

\[ \int \frac{1}{(x+a)^2}dx = -\frac{1}{x+a} \] \[ \int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n\ne -1 \] \[ \int x(x+a)^n dx = \frac{(x+a)^{n+1} ( (n+1)x-a)}{(n+1)(n+2)} \] \[ \int \frac{1}{1+x^2}dx = \tan^{-1}x \] \[ \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} \] \[ \int \frac{x}{a^2+x^2}dx = \frac{1}{2}\ln|a^2+x^2| \] \[ \int \frac{x^2}{a^2+x^2}dx = x-a\tan^{-1}\frac{x}{a} \] \[ \int \frac{x^3}{a^2+x^2}dx = \frac{1}{2}x^2-\frac{1}{2}a^2\ln|a^2+x^2| \] \[ \int \frac{1}{ax^2+bx+c}dx = \frac{2}{\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} \] \[ \int \frac{1}{(x+a)(x+b)}dx = \frac{1}{b-a}\ln\frac{a+x}{b+x}, \text{ } a\ne b \] \[ \int \frac{x}{(x+a)^2}dx = \frac{a}{a+x}+\ln |a+x| \] \[ \int \frac{x}{ax^2+bx+c}dx = \frac{1}{2a}\ln|ax^2+bx+c| -\frac{b}{a\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}} \]
منابع و لینک های مفید
نویسنده علیرضا گلمکانی
شماره کلید 10085
گزینه ها
به اشتراک گذاری (Share) در شبکه های اجتماعی
نظرات 0 0 0

ارسال نظر جدید (بدون نیاز به عضو بودن در وب سایت)