تمرین : انتگرال $ \int\limits_1^4 {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} $ را حل کنید (ریاضیات - Mathematics)
تمرین : انتگرال (Integral) زیر را حل کنید :
\[ \int\limits_1^4 {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} \]حل تمرین :
\[ \int {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} = {1 \over 2}\int {{{\left( {\ln x} \right)}^3}\left( {{1 \over x}} \right)dx} \] \[ \eqalign{ & \Rightarrow \ \ \ \ {1 \over 2}\int {{{\left( {\ln x} \right)}^3}\left( {{1 \over x}} \right)dx} = {{{{\left( {\ln x} \right)}^4}} \over 8} \cr & \Rightarrow \ \ \ \ \int {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} = {{{{\left( {\ln x} \right)}^4}} \over 8} \cr} \]بنابراین :
\[ \eqalign{ & \int\limits_1^4 {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} = \left[ {{{{{\left( {\ln x} \right)}^4}} \over 8}} \right]_{ 1}^{ 4} = \cr & = {{{{\left( {\ln 4} \right)}^4}} \over 8} - {{{{\left( {\ln 1} \right)}^4}} \over 8} \cr} \]می دانیم که ( کلید شماره 20003 ) :
\[ \ln 1 = 0 \]با توجه به نکته بالا :
\[ {{{{\left( {\ln 4} \right)}^4}} \over 8} - {{{{\left( {\ln 1} \right)}^4}} \over 8} = {{{{\left( {\ln 4} \right)}^4}} \over 8} - {{{{\left( 0 \right)}^4}} \over 8} = {{{{\left( {\ln 4} \right)}^4}} \over 8} \]بنابراین :
\[ \Rightarrow \ \ \ \ \int\limits_1^4 {{{{{\left( {\ln x} \right)}^3}} \over {2x}}dx} = {{{{\left( {\ln 4} \right)}^4}} \over 8} \] 1
Thomas' Calculus Early Transcendentals - George B. Thomas Jr., Maurice D. Weir, Joel R. Hass - 13th Edition - صفحه : 428
2
Instructor's Solutions Manual Single Variable - Thomas' Calculus Early Transcendentals - 13th Edition - صفحه : 507
نظرات 0 0 0